本文目录
一元一次不等式解法公式?
一元一次不等式的解法公式为:ax + b > 0 或 ax + b < 0其中,a和b分别为已知数,x为未知数。当a > 0时,解为x > - b/a 或 x < - b/a;当a < 0时,解为x < - b/a 或 x > - b/a。这个公式的含义是,将不等式转化为等式,然后根据等式的解法,求出不等式的解集。需要注意的是,当a=0时,这个不等式的解为不存在,因为一个常数b要么大于0,要么小于0,不可能既大于0又小于0。
怎样解连写型的一元一次不等式?
一元一次不等式解法:解一元一次不等式的一般步骤是:
①去分母,②去括号,③移项,④合并同类项,⑤系数化为1;
⑥其中第当系数是负数时,不等号的方向要改变。一般步骤具体 *** 作:
(1)去分母:根据不等式的性质2和3,把不等式的两边同时乘以各分母的最小公倍数,得到整数系数的小等式。
(2)去括号:根据上括号的法则,特别要注意括号外面是负号时,去掉括号和负号,括号里面的各项要改变符号。
(3)移项 :根据不等式基本性质1,一般把含有未知数的项移到不等式的左边,常数项移到不等式的右边。
(4)合并同类项。
(5)将未知数的系数化为1 :根据不等式基本性质2或3,特别要注意系数化为1时,系数是负数,不等号要改变方向。
(6)有些时候需要在数轴上表示不等式的解集。
二次一元不等式解法?
有以下几种解法
数轴穿根
用穿根法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点,大于零的不等式的解对应这曲线在x轴上方部分的实数x的值的 *** ,小于零的则相反。这种方法叫做序轴穿根法,又叫“穿根法”。口诀是“从右到左,从上到下,奇穿偶 *** 。”
注:该方法适用于所有的不等式。
步骤:
1)把二次项系数变成正的;
2)画数轴,在数轴上从小到大依次标出所有根;
3)从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含x的项是奇次幂就穿过,偶次幂就跨过);
4)注意看看题中不等号有没有等号,没有的话还要注意舍去使不等式为0的根。
图像法
一元二次不等式也可通过一元二次函数图象进行求解。
通过看图象可知,二次函数图象与X轴的两个交点,然后根据题中所需求"<0"或">0"而推出答案。
求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图象法进行解题,使得问题简化。
一元二次方程求根公式
当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a
当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a
只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax2+bx+c=0(a≠0)
公式法可以解任何一元二次方程。
因式分解法,也就是十字相乘法,必须要把所有的项移到等号左边,并且等号左边能够分解因式,使等号右边化为0。
*** 法比较简单:首先将二次项系数a化为1,然后把常数项移到等号的右边,最后在等号两边同时加上一次项系数 *** 值一半的平方,左边配成完全平方式,再开方就得解了。
一元一次不等式有解的解法?
未知数大于等于或小于等于某数
不等式组标准解法?
不等式组解法:解二元方程组,先消去其中一个未知数,求出另一个未知数,再代入原来的方程,求出这个未知数。一元一次不等式组的解法和解一元一次方程一样。
不等式组解法:
解不等式组,可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出来。由两条不等式组成的不等式组,以下是解不等式组的方法:
1、若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”。
2、若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”。
3、若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为a4、若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”。
还没有评论,来说两句吧...