本文目录
求根公式一元二次方程?
只含有一个未知数(一元),并且未知数项的 *** 高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a≠0)。其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。x=2a分之-b±根号b的平方减4ac
一元二次方程公式推导?
一元二次方程求根公式推导过程:ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0...开根后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号), *** 终可得x=[-b±√(b^2-4ac)]/2a。
一元二次方程的根公式是由 *** 法推导来的,那么由ax^2+bx+c(一元二次方程的基本形式)推导根公式的详细过程:
1、ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0,
2、移项得x^2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2,
3、 *** 得x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即(x+b/2a)^2=(b^2-4ac)/4a,
4、开根后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号), *** 终可得x=[-b±√(b^2-4ac)]/2a。
一元二次方程的求根公式pq?
一、一元二次方程的概述
1、定义:等号两边都是等式,只含有一个未知数,未知数的 *** 高次数是2且 *** 高次项的系数不为0,这样的整式方程叫做一元二次方程.
2、求根公式:
x=?b±b2?4ac2a(b2?4ac≥0)。
3、一元二次方程的一般形式:
一元二次方程的一般形式是ax2+bx+c=0(a≠0).其中ax2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.
4、一元二次方程的根:
使方程左右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根.
5、一元二次方程的常见解法:
(1)直接开平方法
(2) *** 法
(3)公式法
(4)因式分解法
(5)利用根与系数的关系
复系数一元二次方程求根公式?
一元二次方程的复数求根公式是x=(-b±√(b^2-4ac))/2a1. 一元二次方程必须同时满足三个条件:
①这是一个整式方程,即等号两边都是整式,方程中如果是有分母;且未知数是在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程,是一个无理方程。
②有且只含有一个未知数;
③未知数项的 *** 高次数为2。
2. 一般形式:ax2+bx+c=0(a≠0)
折叠变形式:ax2+bx=0(a、b是实数,a≠0); ax2+c=0(a、c是实数,a≠0); ax2=0(a是实数,a≠0)。
3. 解题方法
折叠公式法:x=(-b±√(b^2-4ac))/2a求根公式
折叠十字相乘法:x2+(p+q)x+pq=(x+p)(x+q)
一元二次方程6种解法公式?
用因式分解法解一元二次方程
一、将方程右边化为( 0)
二、方程左边分解为(两个 )因式的乘积
三、令每个一次式分别为( 0)得到两个一元一次方程
四、两个一元一次方程的解,就是所求一元二次方程的解。
或:
首先是分解因式法,看能否分解成(x-a)(x-b)=0
如果能,解就是a和b
其次,如果不能分解因式,那么用公式。
ax^2+bx+c=0
x=[-b+√(b^2-4ac)]/(2a)和x=[-b-√(b^2-4ac)]/(2a)
还没有评论,来说两句吧...