本文目录
怎样解一元一次方程?
解一元一次方程的五个步骤:
一、去分母做法:在方程两边各项都乘以各分母的最小公倍数;
依据:等式的性质二二、去括号一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号)
依据:乘法分配律三、移项做法:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)
依据:等式的性质一四、合并同类项做法:把方程化成ax=b(a≠0)的形式;
依据:乘法分配律(逆用乘法分配律)
五、系数化为1做法:在方程两边都除以未知数的系数a,得到方程的解x=b/a。
依据:等式的性质二.解方程口诀去分母,去括号,移项时,要变号,同类项,合并好,再把系数来除掉。同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。同解原理(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
一元一次方程 *** 法的公式?
*** 法的公式。例如: y=a+bx+c可配为 y=
+
。
对一般二次函数 *** ,其他的可以先变成一般函数再 *** :
设y=ax^2+bx+c(a≠0)
则y=a(x^2+bx/a)+c
=a(x^2+2bx/(2a)+(b/2a)^2)+c-b^2/(4a)
=a(x+b/(2a))^2+(4ac-b^2)/(4a)
初中数学
*** 法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为 *** 法。 *** 法公式:(x+y)2=x2+2xy+y2。
在基本代数中, *** 法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数abcd和e它们本身也可以是表达式,可以含有除x以外的变量。 *** 法通常用来推导出二次方程的求根公式。
用 *** 法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。
分数形式的一元一次方程怎么解?
分数形式的一元一次方程的解法:
1.去分母:在方程两边都乘以各分母的最小公倍数;
2.去括号:先去小括号,再去中括号,最后去大括号;
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;
4.合并同类项:把方程化成ax=b(a≠0)的形式;
5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解。
带分数的一元一次方程怎么解?
1.去分母:在方程两边都乘以各分母的最小公倍数;
2.去括号:先去小括号,再去中括号,最后去大括号;
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;
4.合并同类项:把方程化成ax=b(a≠0)的形式;
5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解。
扩展资料:
等式的性质:
(1)等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。
(2)等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式(不为0)。
一元二次方程有4种解法,即直接开平方法、 *** 法、公式法、因式分解法。
(1)公式法可以解所有的一元二次方程,公式法不能解没有实数根的方程(也就是b2-4ac<0的方程)。
(2)因式分解法,必须要把等号右边化为0。
(3) *** 法比较简单:首先将方程二次项系数a化为1,然后把常数项移到等号的右边,最后后在等号两边同时加上一次项系数 *** 值一半的平方。
还没有评论,来说两句吧...