本文目录
一元二次方程五种步骤?
1.开平方法
形如(X-m)2=n (n≥0)一元二次方程可以直接开平方法求得解为X=m±√n。
①等号左边是一个数的平方的形式而等号右边是一个常数。
②降次的实质是由一个一元二次方程转化为两个一元一次方程。
③方法是根据平方根的意义开平方。
2. *** 法
用 *** 法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
3.因式分解法
是利用因式分解的手段,求出方程的解的方法,是解一元二次方程 *** 常用的方法。
分解因式法的步骤:
①移项,将方程右边化为(0);
②再把左边运用因式分解法化为两个(一)次因式的积;
③分别令每个因式等于零,得到(一元一次方程组);
④分别解这两个(一元一次方程),得到方程的解。
4.求根公式法
用求根公式法解一元二次方程的一般步骤为:
①把方程化成一般形式aX2+bX+c=0,确定a,b,c的值(注意符号);
②求出判别式△=b2-4ac的值,判断根的情况.
若△<0原方程无实根;若△>0,X=((-b)±√(△))/(2a)
5.图像法
一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。
当△>0时,则该函数与x轴相交(有两个交点)。
当△=0时,则该函数与x轴相切(有且仅有一个交点)。
当△<0时,则该函数与轴x相离(没有交点)。
一元二次方程怎么解 *** 简单的方法?
1、因式分解法:①因式分解法原理是利用平方和公式(a±b)2=a2±2ab+b2或平方差公式(a+b)(a-b)=a2-b2,把公式倒过来用就是了。②例如x2+4=0这个可以利用平方差公式,把4看成22,就是x2+22 => (x-2)(x+2)再分别解出就可以了。③0乘以任何数都得0,(x-2)要是0那么x=2,(x+2)等于0那么x=-2,这样就可以了。
2、 *** 法:① *** 法不算很难但非常重要, *** 法可以求二次函数顶点和坐标,也可以解一元二次方程。 *** 步,先化为ax2+bx=c的形式。②第二步,取一次项系数b一半的平方,再方程。b=8,先取一半,就是4,然后平方就是16,两边同时加上,就是x2+8x+16=2+16。③变一下形,平方和公式逆用,16看成42,就是(x+4)2=18。④然后直接开平方,x+4=±√18,再移项化简,x=±3√2-4。⑤然后再把解分别写出来就完成了
3、公式法:公式法比较简单,2x2-x=6先化为一般形式ax2+bx+c=0的形式,然后找出a,b,c,再直接套用公式(-b±√b2-4ac)÷2a,Δ=b2-4ac>0有两个不相等的实数根,Δ=b2-4ac=0有两个相等的实数根,解得x1=2 x2=-2/3
一元两次方程解法?
一元二次方程的一般形式为:ax2(2为次数,即X的平方)+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的 *** 高次数是2 的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:
1、直接开平方法;2、 *** 法;3、公式法;4、因式分解法。
一元二次方程判别式是怎么推出来的·?
答:一元二次方程aX平方十bX十C二O的判别式:b平方一4ac是否大于等于零,是用来判定一元二次方程有无实数根。
其具体推法是利用方程的求根公式:X二2a分之负b土根号下b平方一4ac,当b平方一4ac≥0时,根号下b平方一4ac有意义,则方程就有实数根,当b平方一4ac<0时,根号下b平方一4ac无意义,则方程就无实数根,所以一元二次方程有解(或无解)的判别式:b平方一4ac≥0(或<0)就是这样推出来的。
一元二次方程公式推导?
一元二次方程求根公式推导过程:ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0...开根后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号), *** 终可得x=[-b±√(b^2-4ac)]/2a。
一元二次方程的根公式是由 *** 法推导来的,那么由ax^2+bx+c(一元二次方程的基本形式)推导根公式的详细过程:
1、ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0,
2、移项得x^2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2,
3、 *** 得x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即(x+b/2a)^2=(b^2-4ac)/4a,
4、开根后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号), *** 终可得x=[-b±√(b^2-4ac)]/2a。
还没有评论,来说两句吧...