本文目录
一般一元二次方程X的解法?
一元二次方程的一般形式为:ax2(2为次数,即X的平方)+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2 的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:
1、直接开平方法;2、 *** 法;3、公式法;4、因式分解法。
一元一次方程解法及原理?
解方程的原理是移项变号和等式的基本性质。
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘。
2、等式的基本性质性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。则:性质2:等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:a×c=b×c性质3:若a=b,则b=a(等式的对称性)。性质4:若a=b,b=c则a=c(等式的传递性)。解方程需要注意的是:1、通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以。2、解方程应熟练运用等式的基本性质。
3、解方程结束后应将结果带入方程进行验算,且注意解的个数和性质:n元a次方程就是含有n个未知数,且含未知数项最高次数是a。扩展资料一元一次方程的一般解法:1、去分母 ,方程两边同时乘各分母的最小公倍数。2、去括号 ,一般先去小括号,再去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。3、移项 ,把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时注意要变号。
4、合并同类项, 将原方程化为ax=b(a≠0)的形式。
5、化系数为一 ,方程两边同时除以未知数的系数。
6、得出方程的解。
一元二次方程的解集用列举法表示怎么表示?
*** 中,表示一个一元二次方程的解集方法如下:
设这个一元二次方程的解是,x=3或者x=5。那么在 *** 中,一元二次方程的解集表示为:x∈{3,5},因为{3,5}就是一个 *** ,这个 *** 有3和5这两个元素,这两个数构成的 *** 就是方程的解,所以x∈{3,5}就是一元二次方程的解集。
解集的定义为:以一个方程(组)或不等式(组)的所有解为元素的 *** 叫做该方程(组)或不等式(组)的解集。
解一元一次方程的方法有3种?
一元一次方程的解法及其解的三种情况:
(1)解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和将未知数的系数化为1;
(2)最简一元一次方程ax=b的解有以下三种情况:
①当a≠0时,方程有且仅有一个解;
②当a=0,b≠0时,方程无解;
③当a=0,b=0时,方程有无穷多个解.
一元三次方程的求解方法?
盛金定理:当b=0,c=0时,盛金公式1无意义;当A=0时,盛金公式3无意义;当A≤0时,盛金公式4无意义;当T<-1或T>1时,盛金公式4无意义。
当b=0,c=0时,盛金公式1是否成立?盛金公式3与盛金公式4是否存在A≤0的值?盛金公式4是否存在T<-1或T>1的值?盛金定理给出如下回答:
盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式1仍成立)。
盛金定理2:当A=B=0时,若b≠0,则必定有c≠0(此时,适用盛金公式1解题)。
盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式1解题)。
盛金定理4:当A=0时,若B≠0,则必定有Δ>0(此时,适用盛金公式2解题)。
盛金定理5:当A<0时,则必定有Δ>0(此时,适用盛金公式2解题)。
盛金定理6:当Δ=0时,若A=0,则必定有B=0(此时,适用盛金公式1解题)。
盛金定理7:当Δ=0时,若B≠0,盛金公式3一定不存在A≤0的值(此时,适用盛金公式3解题)。
盛金定理8:当Δ<0时,盛金公式4一定不存在A≤0的值。(此时,适用盛金公式4解题)。
盛金定理9:当Δ<0时,盛金公式4一定不存在T≤-1或T≥1的值,即T出现的值必定是-1<T<1。
显然,当A≤0时,都有相应的盛金公式解题。
注意:盛金定理逆之不一定成立。如:当Δ>0时,不一定有A<0。
盛金定理表明:盛金公式始终保持有意义。任意实系数的一元三次方程都可以运用盛金公式直观求解。
当Δ=0时,盛金公式3不存在开方;当Δ=0(d≠0)时,卡尔丹公式仍存在开立方。与卡尔丹公式相比较,盛金公式的表达形式较简明,使用盛金公式解题较直观、效率较高;盛金判别法判别方程的解较直观。重根判别式A=b^2-3ac;B=bc-9ad;C=c^2-3bd是最简明的式子,由A、B、C构成的总判别式Δ=B^2-4AC也是最简明的式子(是非常美妙的式子),其形状与一元二次方程的根的判别式相同;盛金公式2中的式子(-B±(B^2-4AC)^(1/2))/2具有一元二次方程求根公式的形式,这些表达形式体现了数学的有序、对称、和谐与简洁美。
以上盛金公式解法的结论,发表在《海南师范学院学报(自然科学版)》(第2卷,第2期;1989年12月,中国海南。国内统一刊号:CN46-1014),第91—98页。范盛金,一元三次方程的新求根公式与新判别法。
还没有评论,来说两句吧...