本文目录
怎么求复根?
非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。
共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。
共轭复根求解公式:
通常出现在一元二次方程中。若根的判别式△=b2-4ac<0, ,方程有一对共轭复根。
根据一元二次方程求根公式韦达定理:x1,2=-b±√b2-4ac/2a,当b2-4ac<0时, 方程无实根,但在复数范围内有2个复根。复根的求法为x1,2=-b±i√4ac-b2/2a(其中i是虚数,i2=-1)。
由于共轭复数的定义是形如a±bi(b≠0)的形式,称a+bi与a-bi(b≠0)为共轭复数。
另一种表达方法可用向量法表达:x1=pejΩ,x2=pe-jΩ其中p=√a2+b2,tanΩ=b/a。
由于一元二次方程的两根满足上述形式,故一元二次方程在b2-4ac<0时的两根为共轭复根。
根与系数关系:x1+x2=-b/a,x1+x2=c/a。
二元一次方程求根的三种解法?
二元一次方程求根公式
二元一次方程没有求根公式。
一元二次方程有求根公式:设ax2+bx+c=0(a≠0),判别式△=b2﹣4ac
x1,2=(﹣b±√△)/(2a)
△>0时,不相等的两个实根;
△=0时,相等的两个实根;
△<0时,一对共轭复根。
二元一次方程组也有求根公式(P.S.是方程组)
设a1x+b1y=c1
a2x+b2y=c2
求那三个行列式(不好打,就用算术表示了,相信你能看懂)
△1=a1b2﹣a2b1,△2=a1c2﹣a2c1,△3=b1c2﹣b2c1
则x=△2÷△1,y=△3÷△1
一元二次方程求根公式是谁发明的?
赵爽(3世纪初),我国三国时期 *** 的数学家,他的主要贡献是深入研究了《周脾算经》,为该书写了序言,并作了详细注释。赵爽的数学思想和方法对中国古代数学体系的形成和发展有一定的影响。赵爽在对《周脾算经》做注释时,曾写了一篇很有价值的“勾股圆方图”的注文,他在讨论方程ax2+bx+c=0时,用到了求根公式,与现在的求根公式基本上是一致的。
赵爽的成果比印度数学家婆罗门芨多在公元7世纪提出的二次方程求根公式早许多年。在欧洲,一千多年之后才由法国数学家获得类似的结果。
一元二次平方根公式计算公式?
x=(-b+√b2-4ac)/2a和x=(-b-√b2-4ac)。
解方程:ax2+bx+c=0(a≠0)。
解:因为a≠0,原方程两边同时除以a可化成〔(x+(b-√b2-4ac)〕×〔x-(b+√b2-4ac))〕=0,所以原方程的解是x=(-b+√b2-4ac)/2a和x=(-b-√4ac)/2a。
以上就是一元二次方程求根公式的推导过程。
一元三次方程的解法的推导过程?
*** 步:
ax^3+bx^2+cx+d=0
为了方便,约去a得到
x^3+kx^2+mx+n=0
令x=y-k/3 ,
代入方程(y-k/3)^3+k(y-k/3)^2+m(y-k/3)+n=0 ,
(y-k/3)^3中的y^2项系数是-k ,
k(y-k/3)^2中的y^2项系数是k ,
所以相加后y^2抵消 ,
得到y^3+py+q=0,
其中p=(-k^2/3)+m ,
q=(2(k/3)^3)-(km/3)+n。
第二步:
方程x^3+px+q=0的三个根为:
x1=[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x2=w[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w^2[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x3=w^2[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3),
其中w=(-1+i√3)/2。
×推导过程:
1、方程x^3=1的解为x1=1,x2=-1/2+i√3/2=ω,x3=-1/2-i√3/2=ω^2 ;
2、方程x^3=A的解为x1=A^(1/3),x2=A^(1/3)ω,x3=A^(1/3)ω^2 ,
3、一般三次方程ax^3+bx^2+cx+d=0(a≠0),两边同时除以a,可变成x^3+ax^2+bx+c=0的形式。
再令x=y-a/3,代入可消去次高项,变成x^3+px+q=0的形式。
设x=u+v是方程x^3+px+q=0的解,代入整理得:
(u+v)(3uv+p)+u^3+v^3+q=0 ①,
如果u和v满足uv=-p/3,u^3+v^3=-q则①成立,
由一元二次方程韦达定理u^3和V^3是方程y^2+qy-(p/3)^3=0的两个根。
解之得,y=-q/2±((q/2)^2+(p/3)^3)^(1/2),
不妨设A=-q/2-((q/2)^2+(p/3)^3)^(1/2), *** =-q/2+((q/2)^2+(p/3)^3)^(1/2),
则u^3=A;v^3= *** ,
u= A^(1/3)或者A^(1/3)ω或者A^(1/3)ω^2 ;
v= *** ^(1/3)或者 *** ^(1/3)ω或者 *** ^(1/3)ω^2 ,
但是考虑到uv=-p/3,所以u、v只有三组解:
u1= A^(1/3),v1= *** ^(1/3);
u2=A^(1/3)ω,v2= *** ^(1/3)ω^2;
u3=A^(1/3)ω^2,v3= *** ^(1/3)ω,
*** 后:
方程x^3+px+q=0的三个根也出来了,即
x1=u1+v1=A^(1/3)+ *** ^(1/3);
x2=A^(1/3)ω+ *** ^(1/3)ω^2;
x3=A^(1/3)ω^2+ *** ^(1/3)ω。
还没有评论,来说两句吧...