本文目录
一元二次方程有哪些解法,那个方法用到了降次?
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 1、直接开平方法;
2、 *** 法;3、公式法;先将常数c移到方程右边:ax^2+bx=-c 将二次项系数化为1:x^2+b/ax=- c/a 方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2; 方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚2 当b2-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚2 扩展资料只含有一个未知数(一元),并且未知数项的 *** 高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a≠0)。其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。一元二次方程成立必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。②只含有一个未知数;③未知数项的 *** 高次数是2。
一元二次方程通项公式解法?
1、先判断△=b2-4ac,若△<0,则原方程无实根;一元二次方程标准形式是ax2+bx+c=0,求根公式为x=[-b±根号下(b2-4ac)]/2a,若△=0,则原方程有两个相同的解,为x=-b/2a,若△>0,则x=(-b±根号下△)/2a。
2、 *** 法即先把常数c移到方程右边,再将二次项系数化为1,然后化简得-c/a=(b/2a)2,若此式=0,则原方程有两个相同的解,为x=-b/2a;若此式>0,则x=[-b±根号下(b2-4ac)]/2a;直接开平方法,形如(x-m)2=n(n>0),可以直接得出x=m±根号n;因式分解法,将标准方程化为(mx-n)(dx-e)=0的形式,直接求得x=n/m或x=e/d。
一元二次方程因式分解法的四种方法?
一元二次方程有四种解法:直接开平方法; *** 法;公式法;因式分解法。解一元二次方程的基本思想方法为通过“降次”将它化为两个一元一次方程。
1、直接开平方法
形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。
2、 *** 法:用 *** 法解方程ax2+bx+c=0 (a≠0),先将常数c移到方程右边,将二次项系数化为1,方程两边分别加上一次项系数的一半的平方,方程左边成为一个完全平方式。
3、公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式就可得到方程的根。
4、因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
一元二次方程解法x1x2?
一元二次方程首先要运用判别式判定解的情况,若判别式小于零,则方程无实数解。若判别式大于等于零,就有解。解法可以采用两种方法,一种是采用 *** 法,然后开方求解。
另一种方法采用求根公式求解,解出x1、x2。
一元二次方程怎么 *** ?
用 *** 法解二次项系数为1的一元二次方程的步骤:
(1)在方程的左边加上一次项系数的一半的平方,再减去这个数;
(2)把原方程变为(x+m)2=n的形式。
(3)若n≥0,用直接开平方法求出x的值,若n<0,原方程无解。
用 *** 法解二次项系数不是1的一元二次方程
当一元二次方程的形式为ax2+bx+c=0(a≠0,a≠1)时,用 *** 法解一元二次方程的步骤:
(1)先把二次项的系数化为1:方程的左、右两边同时除以二项的系数;
(2)移项:在方程的左边加上一次项系数的一半的平方,再减去这个数,把原方程化为(x+m)2=n的形式;
(3)若n≥0,用直接开平方法或因式分解法解变形后的方程。
还没有评论,来说两句吧...